
Read-only FS abstractions
& tarfs

Wedson Almeida Filho, Microsoft
Kangrejos, 2023/09/17

Motivation

● Confidential containers product
○ Kubernetes orchestration
○ containerd
○ kata containers
○ AMD SEV-SNP and Intel TDX CPUs

● Requirements
○ Resource sharing
○ Image integrity
○ "Lift and shift" existing workloads

■ Existing Open Container Initiative (OCI) images
■ Existing signature of OCI images

Solution using tarfs

● Containerd snapshotter
○ Downloads OCI image layers (typically tar.gz files)
○ Decompresses them
○ Appends "tar" index
○ Appends dm-verity merkle tree

● Containerd kata runtime
○ Hotplugs layers to VMs as read-only block devices

● Containerd kata agent (running in VM)
○ Creates dm-verity volumes from block devices
○ Verifies signature of tar volumes
○ Verifies indexes are valid
○ Mounts dm-verity volumes using tarfs
○ Overlays all tarfs layers with overlayfs

Read-only fs abstractions

● Only adding what's needed to implement a read-only fs
○ This avoids issues with upstreaming not-yet-used code

● dcache is hidden from modules
○ Because there is only one interaction with dentries that can be easily absorbed

● Used by tarfs and puzzlefs (which Ariel will talk about next)
● Goal: zero-cost, safe abstractions

○ If modules don't use unsafe blocks, they don't get undefined behaviour
○ No additional runtime cost when compared to C implementation

● Tarfs is used as sample code in slides
○ Code available here: https://github.com/wedsonaf/linux/tree/rtarfs

https://github.com/wedsonaf/linux/tree/rtarfs

Read-only fs module

//! File system based on tar files and an index.
use kernel::{ /* ... */ };

kernel::module_ro_fs! {
 type: TarFs,
 name: "tarfs",
 author: "Wedson Almeida Filho <walmeida@microsoft.com>",
 license: "GPL",
}

struct TarFs { /* ... */ }

impl fs::ro::Type for TarFs {
 type Data = Box<Self>;
 type INodeData = INodeData;
 const NAME: &'static CStr = c_str!("tar");
 const SUPER_TYPE: Super = Super::BlockDev;
 /* ... */
}

Read-only fs trait

/// A read-only file system type.

pub trait Type {

 /// Data associated with each file system instance (super-block).

 type Data: ForeignOwnable + Send + Sync;

 /// Type of data allocated for each inode.

 type INodeData: Send + Sync;

 /// The name of the file system type.

 const NAME: &'static CStr;

 /// Determines how superblocks for this file system type are keyed.

 const SUPER_TYPE: Super = Super::Independent;

Read-only fs trait (cont'd)

 /// Initialises a super block for this file system type.

 fn fill_super(sb: NewSuperBlock<'_, Self>) -> Result<&SuperBlock<Self>>;

 /// Reads directory entries.

 fn read_dir(

 inode: &INode<Self>,

 pos: i64,

 report: impl FnMut(&[u8], i64, u64, DirEntryType) -> bool,

) -> Result<i64>;

 /// Looks up an entry with the given under the given parent inode.

 fn lookup(parent: &INode<Self>, name: &[u8]) -> Result<ARef<INode<Self>>>;

 /// Reads the contents of the inode into the given folio.

 fn read_folio(inode: &INode<Self>, folio: crate::folio::LockedFolio<'_>) -> Result;

}

Going from NewSuperBlock to SuperBlock

● NewSuperBlock has the following type states:
○ NeedsInit
○ NeedsData
○ NeedsRoot

● Each type state has the following exclusive method:
○ init
○ init_data
○ init_root

Going from NewSuperBlock to SuperBlock (cont'd)

fn fill_super(sb: NewSuperBlock<'_, Self>) -> Result<&SuperBlock<Self>> {

 let sb = sb.init(&SuperParams { blocksize_bits: TARFS_BSIZE_BITS, /* ... */ })?;

 /* ... */

 let tarfs = {

 let h = sb.bread(scount * SECTOR_SIZE / TARFS_BSIZE - 1)?;

 /* ... */

 Box::try_new(TarFs { /* ... */ })?

 };

 let sb = sb.init_data(tarfs)?;

 let root = Self::iget(&sb, 1)?;

 sb.init_root(root)

}

bread without the block size
results in a division by zero.
So it's not available in
NeedsInit typestate, but it's
available in NeedsData.

This creates an inode, which
gives access to the
super-block data, so it needs
to be initialised before we
can allow the creation of
inodes.

fill_super is supposed to
initialise the root once before
returning successfully. This
prevents it from succeeding
without setting the root.

Creating an inode

● If it already exists in the cache, just use it
○ Since this is a read-only fs, it's not stale

● If it doesn't exist yet, create a new "under-construction" one
● If we succeed in initialising it

○ Remove the "under-construction" flag
○ Wake up any threads waiting for this inode

● If we fail in initialising it
○ Mark the "under-construction" inode as bad
○ Wake up any threads waiting for this inode
○ Decrement the refcount

Creating an inode (cont'd)

impl<T: Type + ?Sized> SuperBlock<T> {
 fn get_or_create_inode(&self, ino: u64) -> Result<Either<ARef<INode<T>>, NewINode<T>>>;
}

impl TarFs {
 fn iget(sb: &SuperBlock<Self>, ino: u64) -> Result<ARef<INode<Self>>> {
 /* ... */
 // Create an inode or find an existing (cached) one.
 let inode = match sb.get_or_create_inode(ino)? {
 Either::Left(existing) => return Ok(existing),
 Either::Right(new) => new,
 };
 /* ... */
 inode.init(INodeParams { /* ... */ })
 }
}

We get an existing, initialised
INode, or a new one that
needs to be initialised.

If init or any previous step
fails, the drop
implementation of NewINode
cleans it up. On success,
init transitions the inode
out of the
"under-construction" state.

Locked folio in read_folio function

● When the operation completes, the callee must unlock the folio
● In Rust, we do that automatically in the Drop implementation

○ Callees may choose to keep it alive by not dropping it
● In C, there is no indication that the folio is locked

○ But one must ensure that all exit paths unlock the folio

Bug in romfs

static int romfs_read_folio(struct file *file, struct folio *folio)
{
 struct page *page = &folio->page;

 /* ... */
 if (!buf)
 return -ENOMEM;

 /* ... */
 unlock_page(page);
 return ret;
}

No unlocking of the folio (page in
this case) on the early return.

No indication that the folio is
locked.

Accessing super block context data

● In C, it's via the struct super_block::s_fs_info field
○ Its type is void *

● In Rust, it's via SuperBlock<T>::data()
○ Its type is dependent on T::Data

● Example:

impl TarFs {
 fn iget(sb: &SuperBlock<Self>, ino: u64) -> Result<ARef<INode<Self>>> {
 // Check that the inode number is valid.
 let h = sb.data();
 if ino == 0 || ino > h.inode_count {
 return Err(ENOENT);
 }

 // ...
 }
}

Accessing inode context data

● In C, it's via the container_of macro from a struct inode *
● In Rust, it's via INode<T>::data()

○ Its type is dependent on T::INodeData
● Example:

impl TarFs {

 fn lookup(parent: &INode<Self>, name: &[u8]) -> Result<ARef<INode<Self>>> {

 // ...

 for v in sb.read(parent.data().offset, parent.size().try_into()?)? {

 // ...

 }

 // ...

 }

}

Super block init and cleanup matching

● Variant of the get_tree used in init dictates variant of kill to use on cleanup
● Examples:

○ get_tree_bdev and kill_block_super
○ get_tree_nodev and kill_anon_super

● In C, there is no compiler enforcement of this requirement
● In Rust, T::SUPER_TYPE defines what to use

○ Since it's a compile-time constant, all branches based on it are eliminated at compile time
○ There is no way (without unsafe blocks) to mismatch the functions
○ Reading from a block device also fails if the type doesn't have a bdev

■ This check is elided when it does

inode context data

● Attaching data to an inode:
○ Allocate a bigger struct with an embedded struct inode
○ When freeing, use container_of to go from inner struct inode to outer struct

● File systems that do this also allocate a kmem_cache
○ Needs to be freed when the file system is unregistered

● In C, this is manual and repeated in all file systems
● In Rust, we have an implementation parametrised on T::INodeData

○ As efficient as the C version when monomorphised, but type safe

Reading from block device

● When using bread, the cache is used to read blocks
● The block heads are ref-counted

○ In Rust, it uses the ARef abstraction, so the ref-counting is guaranteed to be safe
● When accessing the data, lifetimes enforce that the data access doesn't

outlive the refcount
○ It's not possible to access the contents of a block with we release the refcount

● These enforcements are all done at compile-time: no runtime cost

Iterating over blocks in a block device

● When we need to read a range of bytes from a block device
○ That isn't necessarily block aligned
○ That may span multiple blocks

● Occurs several times in tarfs
● To avoid code duplication, In Rust we provide an iterator

/// Reads `size` bytes starting from `offset` bytes.
///
/// Returns an iterator that returns slices based on blocks.
pub fn read(
 &self,
 offset: u64,
 size: u64,
) -> Result<impl Iterator<Item = Result<super::buffer::View>> + '_>;

Iterating over blocks in a block device: example

fn name_eq(sb: &SuperBlock<Self>, mut name: &[u8], offset: u64) -> Result<bool> {
 for v in sb.read(offset, name.len().try_into()?)? {
 let v = v?;
 let b = v.data();
 if b != &name[..b.len()] {
 return Ok(false);
 }
 name = &name[b.len()..];
 }
 Ok(true)
}

Thank you!
Questions?

